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1Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

2Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

(Received 17 October 2008; revised 2 June 2009; accepted 2 June 2009; first published online

21 September 2009)

Navier–Stokes turbulence subject to solid-body rotation is studied by high-resolution
direct numerical simulations (DNS) of freely decaying and stationary flows. Set-
ups characterized by different Rossby numbers are considered. In agreement with
experimental results strong rotation is found to lead to anisotropy of the direct
nonlinear energy flux, which is attenuated primarily in the direction of the rotation
axis. In decaying turbulence the evolution of kinetic energy follows an approximate
power law with a distinct dependence of the decay exponent on the rotation frequency.
A simple phenomenological relation between exponent and rotation rate reproduces
this observation. Stationary turbulence driven by large-scale forcing exhibits k−2

⊥ -
scaling in the rotation-dominated inertial range of the one-dimensional energy
spectrum taken perpendicularly to the rotation axis. The self-similar scaling is
shown to be the cumulative result of individual spectral contributions which, for
low rotation rate, display k−3

⊥ -scaling near the k‖ = 0 plane. A phenomenology which
incorporates the modification of the energy cascade by rotation is proposed. In
the observed regime the nonlinear turbulent interactions are strongly influenced by
rotation but not suppressed. Longitudinal two-point velocity structure functions taken
perpendicularly to the axis of rotation indicate weak intermittency of the k‖ = 0 (2D)
component of the flow while the intermittent scaling of k‖ �= 0 (3D) fluctuations is well
captured by a modified She–Lévêque intermittency model which yields the expression
ζp = p/6 + 2(1 − (2/3)p/2) for the structure function scaling exponents.

1. Introduction
Hydrodynamic turbulence subject to rotation is an ubiquitous problem in fluid

mechanics. The understanding of its detailed properties is crucial for engineering
problems such as the design of turbomachinery and for the understanding of
atmospheric and oceanic flows influenced by the earth’s rotation. These applications
have motivated an extensive research on the macroscopic and spectral properties of
rotating turbulence though a comprehensive and fully consistent physical picture is
still missing.

Early experiments show the tendency of rotating turbulence to asymptotically two-
dimensionalize in planes perpendicular to the rotation axis Ω , where Ω = |Ω | is the
rotation frequency. Signatures of this behaviour are, for example, an increased ratio
of velocity correlation lengths along and perpendicular to the axis of rotation (see,
e.g. Ibbetson & Tritton 1975), visible elongation of spatial structures along Ω (e.g.

† Email address for correspondence: wolf.mueller@ipp.mpg.de



426 M. Thiele and W.-C. Müller

in Hopfinger, Browand & Gagne 1982) or anisotropy of characteristic length scales
and time scales (e.g. in Wigeland 1978; Jacquin et al. 1990). In addition, slower
decay of kinetic energy is found in the works of Wigeland (1978) and Jacquin et al.
(1990) as compared to non-rotating turbulence. More recently, the experiments of
Morize & Moisy (2006) show the significant influence of confinement on the decay of
rotating turbulence. Baroud et al. (2002, 2003) consider two-point increment statistics
up to order p = 10 yielding inertial-range scaling exponents ζp = p/2. The work of
Morize, Moisy & Rabaud (2005) focuses on the energy spectrum E(k) which exhibits
a Rossby number dependent scaling exponent continuously ranging between −5/3
(slow rotation) and about −2.3 (fast rotation). Both experiments feature turbulent
flows with energy injection at intermediate scales and thus allow an inverse cascade
of kinetic energy to develop in the quasi-two-dimensional flow expected for strong
rotation. Recent experimental investigations by Seiwert, Morize & Moisy (2008)
which focus on the scaling of velocity structure functions also show a decrease of
intermittency with increasing rotation rate.

The first direct numerical simulations (DNS) of rotating turbulence conducted
by Bardina, Ferziger & Rogallo (1985), Mansour, Cambon & Speziale (1992) and
Hossain (1994) also suggest reduction of the energy flux and two-dimensionalization.
They suffer, however, from small spatial resolution and correspondingly low Reynolds
numbers and do not yield conclusive results on the spectral properties of the flow.
Simulations at higher Reynolds number by Godeferd & Lollini (1999) and Morinishi,
Nakabayashi & Ren (2001) provide more evidence for the experimentally observed
behaviour of the correlation lengths and the decay properties of the kinetic turbulent
energy, respectively. For the case of driven turbulence Yeung & Zhou (1998) find k−2-
scaling of the energy spectrum in a set-up with large scale forcing. On the contrary,
the simulations of Smith & Waleffe (1999), Chen et al. (2005) and Mininni, Alexakis
& Pouqet (2009) explore systems with forcing at intermediate scales. All three works
identify a quasi-two-dimensional state in the case of strong rotation accompanied
by an inverse energy cascade for wavenumbers k < kforcing. In this wavenumber range
Smith & Waleffe (1999) report to find k−3-scaling of the energy spectrum while a
k−2-behaviour for k > kforcing is observed by Smith & Waleffe (1999) and Mininni et al.
(2009).

Large eddy simulations (LES) like those of Squires et al. (1993), Bartello, Métais &
Lesieur (1994) and Yang & Domaradzki (2004) are a useful tool to study the effects of
rotation on characteristic properties of rotating turbulence such as the slowing down
of energy decay, the large-scale structure of the flow and its tendency to become
two-dimensional. The approach allows to attain Reynolds numbers beyond the reach
of DNS. However, the results of LES crucially depend on the applied subgrid model
which requires careful adjustments and gauging by comparison with high-resolution
DNS or experimental measurements. For the detailed numerical investigation of
small-scale properties of turbulence like anisotropic inertial-range scaling of the
energy spectrum and higher order structure functions, therefore, the DNS approach
is chosen in this work.

Different theoretical approaches exist with regard to rotating turbulence. Shell
models, which are strongly simplified representations of nonlinear turbulent dynamics,
allow for the straightforward inclusion of rotation effects, for example, via modes
governed by a time-correlated stochastic process as in Hattori, Rubinstein & Ishizawa
(2004). The simplicity of those models, however, restricts their predictive capabilities
to a continuous change of spectral scaling between Kolmogorov k−5/3-scaling (slow
rotation) and k−2-behaviour for fast rotation. Zhou (1995) and Mahalov & Zhou
(1996) recover k−2-scaling of the energy spectrum in the context of quasi-normal
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closure theory using dimensional arguments first employed by Kraichnan (1965).
Canuto & Dubovikov (1997) arrive at similar results via a formal treatment of the
spectral energy flux using helical-mode decomposition. The former work is based
on the assumption that τΩ = Ω−1 is the dominant time scale of nonlinear relaxation
while the latter study is analytically showing the same covering cascade dynamics
for rotation rates up to τΩ � τNL ∼ �/v�. Here, τNL is the nonlinear eddy turnover
or relaxation time defined with the r.m.s. velocity v� at scale � (see below). On
the contrary, weak turbulence theory (see, e.g. Galtier 2003; Cambon, Rubinstein &
Godeferd 2004; Bellet et al. 2006) yields different anisotropic scaling relations but is
only strictly applicable in the asymptotic limit τΩ � τNL.

This article is motivated by the lack of a simple dynamical picture of spectral
energy transfer which could also help to improve the understanding of turbulent
energy decay. The proposed phenomenology is backed up by high-resolution DNS
of incompressible rotating homogeneous turbulence in free decay and of rotating
turbulence subject to large-scale driving. The kinetic energy is found to exhibit
approximate power law decay with an exponent that decreases with increasing rotation
frequency. This behaviour is in agreement with the observed attenuation of nonlinear
spectral transfer under the influence of rotation and is captured by a simple model
based on the cascade phenomenology. In the case of forced turbulence, analysis of one-
dimensional spectral data indicates anisotropic energy flux mainly perpendicular to
Ω . Inertial-range scaling of the perpendicular energy spectrum ∼ k−2

⊥ is observed and
reproduced by the dynamical cascade phenomenology. While the parallel spectrum
does not show clear scaling, the perpendicular spectra at fixed k‖ display k−3-scaling
in the vicinity of k‖ =0 for low rotation rate. For growing Ω , energy accumulates
at k‖ =0 in agreement with the observed quasi-two-dimensionalization of the system.
The intermittency measured via velocity structure functions perpendicular to Ω is very
weak for the 2D component of the flow (k‖ =0). In contrast, the intermittent scaling
signature of the 3D component (k‖ �= 0) is in agreement with a modified She–Lévêque
model and exhibits a weak trend towards Gaussianity for high rotation rate. The
remainder of this paper is organized in the following way: in § 2 we introduce the
equations of rotating fluid flow and present the numerical methods that have been
used. Sections 3 and 4 comprise the results on spectral and macroscopic properties
of the flow and a summary is given in § 5.

2. Basic equations and numerical methods
Incompressible fluid flow subject to solid body rotation is usually described in a

frame of reference rotating about a fixed axis Ω = Ω êz with frequency Ω using the
dimensionless Navier–Stokes equations including the Coriolis force,

∂tv + v · ∇v = −∇P + μ�v + 2 Ω v × êz, (2.1)

∇ · v = 0, (2.2)

where the centrifugal force has been incorporated in the generalized pressure P , or
the numerically more favourable vorticity formulation

∂tω = ∇ × (v × ω + 2 Ω v × êz) + μ�ω, (2.3)

∇ · v = 0, (2.4)

with the vorticity ω = ∇ × v (see, e.g. Greenspan 1968). The dimensionless kinematic
viscosity μ and rotation rate Ω are both assumed to be constant.

Equations (2.3) and (2.4) are integrated numerically on a cubic box extending
2π in each dimension with triply periodic boundary conditions. The integration is
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Simulation Grid Forcing Ω μ tsim Ro Re

I 5123 Yes 5 4 × 10−4 45 5.3 × 10−2 4000
II 5123 Yes 50 4 × 10−4 30 1.3 × 10−2 2300

III 2563 No 0−5 1 × 10−3 36 ∞ − 2 × 10−2 300–1100

Table 1. Parameters for the different simulation runs: rotation rate Ω , viscosity μ, total
duration tsim , Rossby number Ro and Reynolds number Re.

performed in a pseudospectral Fourier representation by applying an explicit leapfrog
scheme. The diffusive term is incorporated using an integrating factor technique (see,
e.g. Meneguzzi & Pouquet 1989). The time step which is required for numerical
stability by the Courant–Friedrichs–Lewy criterion ensures the temporal resolution
of all inertial-wave oscillations present in the system. The aliasing error introduced
by the pseudospectral approach is reduced by spherical mode truncation. The quasi-
stationary state of the driven systems is sustained by a forcing which freezes all modes
with k � kf = 2. The applied resolution is 5123 collocation points for forced and 2563

for decaying turbulence.
The isotropic initial state of the forced simulations is a smooth vorticity field with

random phases and an energy spectrum E(k) ∼ exp(−k2/k2
0), k0 = 4. This configuration

is integrated forwards in time without forcing until the maximum of enstrophy is
reached. After this period of time, which corresponds to one large eddy turnover time
(LET) and to three units of time in the notation of this paper, the energy spectrum
is fully developed in its spectral extent and the forcing is switched on. The spectral
distribution of energy evolves self-consistently towards a state with a low-order power
law at largest scales and a Kolmogorov-type inertial range. As soon as total energy
E =

∫
V

dV v2/2 and dissipation ε = μ
∫

V
dV ω2 are statistically stationary with E � 1

(more precisely: 0.87 for Ω =5 and 1.3 for Ω =50) and ε � 0.05, Ω is set to a finite
value. For decaying turbulence simulations a similar random initial field is generated
and left to evolve freely for one LET before rotation is switched on. After the
onset of rotation a statistically stationary state of turbulence is maintained in driven
simulations for 10 or 15 LETs depending on the rotation rate. Decaying runs extend
over approximately 12 LETs. The dimensionless kinematic viscosity is constant in all
simulations.

The characteristic length L0 and velocity V0, necessary for the calculation of the
macroscopic Rossby number Ro =V0/(2ΩL0) and Reynolds number Re = L0V0/μ,
can only be determined a posteriori in homogeneous turbulence. Therefore, both
quantities are estimated in the dimensionless system using E, ε and Ω as
L0 ∼ E/(Ωε)1/2 and V0 ∼ E1/2. Hence Rossby and Reynolds numbers given in this

paper are defined as Ro =
√

ε/(4ΩE) and Re =
√

E3/(Ωε)/μ, respectively. Specific
parameters of the performed simulations are summarized in table 1.

3. Structure of the flow
An immediate impression of the structure of rotating turbulence is provided

by visualizations of the flow field given in figure 1. The system shows a distinct
structuring along the rotation axis which is especially pronounced for simulation II
and indicates a strong velocity correlation along this direction. The observed trend
to a quasi-two-dimensional state with faster rotation is in agreement with previous
experimental findings (see above). It is the consequence of a nonlinear analogue of
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(a) (b)

Figure 1. Visualization of the magnitude of the velocity field |v(r, t)| for simulations I (a)
and II (b) in the statistically stationary regime of the flow. Brighter colours correspond to
higher values of |v| and darker colours to lower values. The rotation axis points in the vertical
direction. The pictures show the flow field of the whole 5123 simulation domain.

the Taylor–Proudman theorem (Mahalov & Zhou 1996; Chen et al. 2005). For more
mathematically oriented works on, for example, the dynamics of two- (k‖ =0) and
three-dimensional (k‖ �= 0) flow components as well as the issues of their non-vanishing
mutual interaction in the limit Ω → ∞ see Babin, Mahalov & Nicolaenko 2000 and
references therein.

The clearest signature of the turbulent energy cascade is found in energy spectra and
energy flux functions. Due to the above-mentioned anisotropy of the turbulence, one-
dimensional spectral quantities are considered in directions parallel and perpendicular
to the rotation axis. The axis-parallel nonlinear energy flux over wavenumber k‖
is given by Tk‖ =

∫ k‖
0

dk′
‖
∫

dk′ ∫ dk⊥(iω∗ · (k × ˜[v × ω]k) + c.c.)/k2, with [̃•] denoting
Fourier transformation, k⊥ ⊥ Ω , k′

‖ ‖ Ω and k′ ⊥ k⊥, k′
‖. The axis-perpendicular flux

function Tk⊥ is defined analogously using the integration
∫ k⊥

0
dk′

⊥
∫

dk′ ∫ dk‖ with the
k⊥ component running along an arbitrary fixed direction in the axis-perpendicular
plane. The fluxes are normalized with the total energy dissipation rate ε =μ

∫
dV ω2.

The parallel and perpendicular energy fluxes for Ω = 0, 5, 50 are negative at all
wavenumbers indicating direct energy transfer towards small scales (Müller & Thiele
2007). The two-dimensionalization visible in figure 1 is not in contradiction with the
observed direct fluxes of energy which are a mere consequence of the large scale driving
of the flow. The fluxes weaken with increasing Ω , a trend that is much stronger in Tk‖
than in Tk⊥ . The increasing anisotropy of the energy cascade with growing Ω reflects
the nonlinear nature of the dynamical process that is at least partially responsible
for the observed two-dimensionalization of the flow. The classical picture of energy
transfer through eddy breakup relates a stronger eddy scrambling perpendicular to
the rotation axis than in the parallel direction along which coherent structures remain
comparatively intact.

The perpendicular energy spectra E(k⊥) =
∫

dk′
‖
∫

dk′|vk|2/2 shown as solid lines

in figure 2 display inertial-range scaling for 4 � k⊥ � 20 (I) and 5 � k⊥ � 16 (II). The
shortening of the scaling range with increasing rotation rate is due to an extension of
the dissipation region towards smaller k (see below). In simulation II a bump persists
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Figure 2. Perpendicular two-dimensional spectra E(k‖, k⊥) for Ω = 5 (a) and Ω =50 (b) at

fixed k‖ and compensated with k2
⊥. The spectrum for k‖ = 0 (dotted) differs markedly from

those for k‖ = 1−6 (dashed lines from top down) and higher. Three-dimensional perpendicular
spectra are obtained by k‖ integration from E(k‖, k⊥) (solid). The dash-dotted line indicates

k−3
⊥ -scaling.

around kf , where the forcing region descends into the freely evolving range of scales.
It is a result of the simple forcing scheme and is tolerable at the chosen numerical
resolution as it is not significantly perturbing the flow beyond k ≈ 5.

In spite of the shortened inertial range in simulation II both cases clearly exhibit
the scaling E(k⊥) ∼ k−2

⊥ . These results agree with the DNS of Yeung & Zhou (1998)
and Smith & Waleffe (1999)(for k > kf ) as well as shell-model calculations (Hattori
et al. 2004). Recent experimental results on decaying turbulence subject to rotation
(Morize et al. 2005) yield an energy scaling exponent ≈ −2.5 for the micro Rossby
number of Roω = 〈ω2

3〉1/2/(2Ω) � 0.08 (corresponding to our case II) and an exponent
of ≈ −1.7 for Roω � 0.7 (corresponding to I). The experimental configuration with
an initial excitation of the flow followed by decay under rotation is however not
directly comparable to the simulations described here, which are characterized by a
continuous large-scale forcing. We note in passing that these Rossby numbers place
the present simulations in the ‘intermediate’ Rossby number regime of Bourouiba &
Bartello (2007). In the experiment of Baroud et al. (2002) the same scaling ∼ k−2 is
observed although here forcing at the small scales produces an inverse energy cascade.

Several theoretical models arrive at the scaling shown in figure 2. In the context
of quasi-normal closure theories Zhou (1995) and Mahalov & Zhou (1996) have
conducted a dimensional analysis of the energy flux terms, assuming τ ∗ ∼ τΩ ∼ Ω−1 for
the relaxation time scale of nonlinear interactions τ ∗, whereas Canuto & Dubovikov
(1997) have analysed the energy flux formulated in helical mode decomposition,
both arriving at the same scaling result. On the contrary, weak turbulence theory
yields E(k) ∼ k−3 (Cambon et al. 2004; Bellet et al. 2006) in the asymptotic quasi-
normal Markovian approximation valid for k‖ �=0 and E(k) ∼ k−2 (Galtier 2003). The
former result is regarded as the consequence of a strongly anisotropic spectral energy
distribution with respect to Ω while the latter explicitly assumes spectral isotropy in
combination with a phenomenological nonlinear transfer time based on the wave-
kinetic equation. Generally, however, wave turbulence theory predicts anisotropic
scalings in the context of rotating turbulence.

It is noteworthy that the axis-parallel spectra shown in figure 3 do not show clear
scaling. This indicates that the perpendicular domain of wavenumbers provides the
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Figure 3. One-dimensional energy spectra parallel to the rotation axis compensated with k2
‖

for Ω = 5 (solid) and Ω = 50 (dotted).

dominant contribution to the angle-averaged scaling E(k) ∼ k−2 found in some of the
above-mentioned numerical and experimental studies.

The contributions to the perpendicular spectrum for fixed k‖, shown in
figure 2, exhibit for Ω = 5 k−3

⊥ -scaling in the vicinity of k‖ =0. Note that
E(k⊥) ∼

∫
dk‖E(k‖, k⊥) �= E(k‖ = const, k⊥). The scaling range, however, shrinks from

the low k side with growing k‖. For Ω = 50 the spectral contributions for fixed k‖
show no clear scaling. Evidently, the observed k−2

⊥ power law is due to spectral
contributions from all wavenumbers k‖. This observation is in contradiction to weak
turbulence simulations reported in Bellet et al. (2006) which give k−2

⊥ -scaling in
directions perpendicular to Ω and suggest that k−3-spectra are generated by spherical
averaging. Furthermore and especially for Ω = 50, the energy is mainly concentrated
around the plane k‖ = 0 as expected from previous studies (see, e.g. Cambon &
Jacquin 1989; Cambon, Mansour & Godeferd 1997) and in agreement with the
observed nonlinear two-dimensionalization.

The observed axis-perpendicular spectral scaling can be described by a simple
phenomenology of rotating turbulence proposed in Müller & Thiele (2007)
which tries to capture the effect of inertial oscillations on convective fluid
motion. The phenomenology applies in the inertial range under the additional
constraint kΩ > k > min(kd, k

Ω
d ), i.e. when nonlinear energy transfer is dominated

by Coriolis force effects. This spectral interval is bounded by the rotation
wavenumber kΩ = (Ω3/ε)1/2 whose inverse, also called Rossby deformation radius,
is analogous to the geophysical Ozmidov scale (see, e.g. Ozmidov 1992), the
classical Kolmogorov dissipation wavenumber kd = (ε/μ3)1/4, and its rotation-modified
counterpart kΩ

d = (ε/Ω)1/2/μ (see, e.g. Zeman 1994; Canuto & Dubovikov 1997).
For turbulent fluctuations vξ perpendicular to Ω on spatial scale ξ ∼ k−1

⊥ the
influence of rotation on the inertial-range energy transfer in planes perpendicular to
Ω is phenomenologically described similarly to the Iroshnikov–Kraichnan picture of
magnetohydrodynamic turbulence (Iroshnikov 1964; Kraichnan 1965). Taking into
account the random displacements that a fluid particle experiences during a nonlinear
interaction of turbulent eddies under the influence of inertial oscillations leads to a
prolonged energy transfer time τtr ∼ τ 2

NL⊥
/τΩ with τNL⊥ ∼ ξ/vξ as compared to the
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non-rotating case. This yields by standard dimensional arguments the non-intermittent
scaling relation vξ ∼ (Ωε)1/4ξ 1/2 corresponding to the observed scaling of the energy
spectrum ∼ k−2

⊥ (see also Zhou 1995; Canuto & Dubovikov 1997).
The numerical values of the characteristic wavenumbers are for simulation (I):

kΩ � 50, kΩ
d � 250, kd � 167, and for simulation (II): kΩ � 1581, kΩ

d � 79, kd � 167. It
should be noted that, according to their definition, for increasing Ω , kΩ grows while
kΩ

d decreases. This is the reason for the smaller inertial range in system I and could
also explain why in earlier works with lower resolution the scaling exponent of the
energy spectrum for high rotation rates has been difficult to pin down.

The two-dimensionalization evident in figure 1, due to the large-scale driving, does
not lead to an inverse energy cascade but still leaves some spectral traces that can be
understood by the following ordering considerations: it is proposed that for fixed Ω

the are three different regimes of rotating turbulence: (a) turbulence with negligible
rotation effects at k � kΩ , (b) turbulence strongly dominated by the Coriolis force
at k � kΩ which is asymptotically described by weak-turbulence theory with the
associated purely nonlinear two-dimensionalization via anisotropic nonlinear energy
transfer and (c) rotating turbulence in the transient regime at k � kΩ observed in the
present simulations where quasi-two-dimensionalization occurs due to the ‘nonlinear
Taylor–Proudman theorem’ (see above). This effect entails an observable energetic
separation of 2D (k‖ = 0) and 3D (k‖ �= 0) components of the velocity field which
exhibit an energetically weaker coupling at high rotation rate (see, e.g. Bourouiba
& Bartello 2007, and references therein). It can, however, be shown rigorously
(see, e.g. Babin et al. 2000) that the dynamical coupling of 2D and 3D fluctuations
remains finite for all values of Ω . In regime (a) turbulence is based on nonlinear eddy
interaction, regime (b) represents turbulence governed by (weak) wave interaction,
while nonlinear dynamics underlying regime (c) correspond to wave-modified eddy
interaction. In regime (c) the 2D fluctuations should exhibit dynamics different from
the 3D fluctuations as indicated by the nonlinear Taylor–Proudman theorem. A
possible scenario that would be in agreement with the observed scaling laws consists
of a direct cascade of 3D energy as described by the proposed phenomenology in
combination with an inverse cascade of 2D energy (towards wavenumbers smaller
than the forcing range) or a direct enstrophy cascade (towards wavenumbers larger
than the forcing range). In this picture, the k−3 inertial-range scaling of 2D energy
could be interpreted as the signature of a direct 2D enstrophy cascade.

Regime (c), in fact, describes a state of continuous transition from Ro → ∞
(negligible rotation) to Ro → 0 (weak inertial-wave turbulence). This transitional
state is applying to most realistic rotating systems. The dynamical phenomenology
by Müller & Thiele (2007) could be a reasonable starting point for extending the
theoretical description of rotating turbulence to include the growing influence of
inertial waves on turbulence dynamics.

To obtain the scaling exponents ζp of the axis-perpendicular longitudinal velocity
structure functions, Sp = 〈|[v(r) − v(r + ξ )] · ξ/ξ |p〉 ∼ ξ ζp their extended self-similarity
(ESS) first observed by Benzi et al. (1993) in the non-rotating case is exploited.
By this heuristic but generally accepted procedure exponents up to order p =8 can
be determined with sufficient precision in spite of the limited spatial resolution and
overall duration of the simulations. The velocity field is resolved into a 2D component
(k‖ = 0) and 3D fluctuations (k‖ �= 0) (see, e.g. Bourouiba & Bartello 2007). The relative
exponents ζp/ζ2 obtained via ESS from the 3D velocity coincide with the ζp since the

numerical results Ek⊥ ∼ k−2
⊥ ∼ k

−(ζ2+1)
⊥ yield ζ 3D

2 = 1. For the 2D component ζ 2D
2 = 2 is
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p ζ 2D,Ω = 5
p ζ 2D,Ω = 50

p ζ nonintermitt
p ζ 3D,Ω = 5

p ζ 3D,Ω = 50
p ζmodel

p

1 1.02 ± 0.03 1.0 ± 0.01 1 0.52 ± 0.003 0.52 ± 0.002 0.53
2 2 2 2 1 1 1
3 2.95 ± 0.06 2.99 ± 0.02 3 1.43 ± 0.006 1.43 ± 0.007 1.41
4 3.88 ± 0.1 3.97 ± 0.05 4 1.82 ± 0.02 1.80 ± 0.02 1.78
5 4.78 ± 0.2 4.94 ± 0.08 5 2.15 ± 0.03 2.13 ± 0.03 2.11
6 5.67 ± 0.3 5.91 ± 0.1 6 2.42 ± 0.05 2.42 ± 0.05 2.41
7 6.53 ± 0.4 6.86 ± 0.1 7 2.65 ± 0.07 2.68 ± 0.07 2.68
8 7.38 ± 0.5 7.81 ± 0.2 8 2.84 ± 0.1 2.91 ± 0.09 2.94

Table 2. Structure function scaling exponents for 2D and 3D components of the velocity
field with Ω = 5 and Ω = 50. The values are obtained by ESS assuming ζ 3D

2 = 1 and ζ 2D
2 = 2.
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Figure 4. Axis-perpendicular structure function scaling exponents ζp of velocity fluctuations
with k‖ =0 (a) and k‖ �= 0 (b) up to order 8 for moderate, strong and no rotation. Solid:
Ω = 5, dotted: Ω = 50, dash-3-dot: Ω =0, dashed: intermittency model (3.1), dash-dotted:
non-intermittent scaling, ζp = p (a) and ζp = p/2 (b).

chosen consistently with the inertial-range scaling of the 2D energy spectrum ∼ k−3
⊥

(dotted line in figure 2).
The ESS results shown in figure 4 and table 2 indicate a weakly intermittent

structure of the 2D velocity component. The difference between exponents from non-
rotating turbulence and those for Ω =50 indicates that the reduction of intermittency
for higher Ω is not a simple consequence of the removal of fluctuations with higher
k‖. The 3D fluctuations exhibit an intermittent signature that is up to order p =7
virtually independent of the rotation rate. The highest order scaling exponent is,
however, suggesting slightly higher intermittency for Ω = 5 than for Ω = 50.

A comparison with two-point statistics obtained with the total turbulent velocity
field including all k‖ contributions (Müller & Thiele 2007) reveals that the 2D-
component of velocity tends to govern structure function scaling for Ω = 50. In
contrast, the ζp taken with Ω = 5 are rather close to the values obtained with the
k‖ �= 0 velocity. The dominance of the 2D fluctuations in structure function scaling at
high Ω is plausible because of the reduced activity of axis-perpendicular nonlinear
interactions that is visible, for example, in the corresponding energy flux (Müller &
Thiele 2007). The accompanying reduction of intermittency in the 2D flow component
with higher rotation rate points towards stronger dynamical influence of inertial waves
since weak wave turbulence is generally non-intermittent. This effect is stronger in the
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Figure 5. PDFs of 3D velocity differences (k‖ �= 0) taken at different spatial distances
(increasing from left to centre in each plot) for Ω = 5 (a) and Ω = 50 (b). The width is rescaled
by the velocity variance, and all curves are shifted to a common maximum at 1 to allow for
simpler comparison with the shape of a Gaussian (dash-dotted curve).

2D velocity than in the 3D component as the nonlinear energy flux is strongly depleted
in the axis-parallel direction at high rotation rate compared to the axis-perpendicular
flux (ibid.).

The 3D structure function scaling is well represented by an intermittency model
based on the She–Lévêque (SL) ansatz (She & Lévêque 1994). The SL model is
quite successful in describing intermittent scalings of two-point statistics in various
non-rotating turbulent flows. It can be written in a general form exhibiting two
parameters which can be determined by physical considerations (Grauer, Krug &
Marliani 1994; Politano & Pouquet 1995; Müller & Biskamp 2000): ζp = p/(3g) +
C0(1 − (1 − 2/(3C0))

p/g). While C0 stands for the codimension of the most singular
dissipative structures, g is connected to the basic non-intermittent scaling exponent
v� ∼ �1/g . In the present three-dimensional simulations the most singular structures
are quasi-one-dimensional vortex filaments, that is, C0 = 2, while relation (5.1) yields
g =2. This results in the intermittency model

ζp = p/6 + 2(1 − (2/3)p/2), (3.1)

which agrees well with the numerical data as shown in figure 4 (see also table 2).
To conclude the analysis of the structure of rotating turbulence we present

probability density functions (PDFs) P (δvξ ) of the axis-perpendicular longitudinal
velocity increments δvξ = [v(r) − v(r + ξ )] · ξ/ξ . Characteristic one-time PDFs for
the 3D velocity field are shown in figure 5. For both rotation rates the PDFs
shift from Gaussian form at large scales to functions with stretched exponential
tails at small scales. This well-known behaviour indicates that both flows are
intermittent in agreement with the structure function scaling. The tendency towards
non-intermittent quasi-two-dimensional flow for increasing rotation rate is visible in
the slight contraction of the normalized PDFs that is quantified by decreasing flatness
S4/(S2)

2 taking on values of 9.4 (Ω =5) and of 7.8 (Ω = 50) at small scales ξ . At
large scales the flatness is, for both values of Ω , close to 3, a value characteristic
for a Gaussian distribution. The skewness S3/S

3/2
2 is also consistent with Gaussian

statistics at large scales where it is ranging around zero. For Ω = 50 this behaviour
is observed at all scales. For Ω =5 the skewness drops to a level close to −0.5 at
the small-scale end, a value known from non-rotating flow. Time-averaged flatness
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Figure 6. PDFs of 2D velocity differences (k‖ = 0) taken at different spatial distances for
Ω = 5 (a) and Ω = 50 (b). The width is rescaled and all curves are shifted as in figure 5. The
dash-dotted curve represents a Gaussian.
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Figure 7. Time-averaged flatness S4(ξ )/(S2(ξ ))2 (a) and skewness S3(ξ )/(S2(ξ ))3/2 (b) of the
PDFs corresponding to the 3D velocity fluctuations (figure 5) for for Ω = 5 (solid line), Ω = 50
(dashed line) and Ω = 0 (dash-3-dotted line). The dash-dotted lines display the respective
values for a Gaussian.

and skewness of the 3D velocity component are shown in figure 7. These findings
suggest the existence of a self-similar limiting case for very high rotation rates
(cf. Baroud et al. 2002).

Exemplary one-time PDFs for the 2D component of the velocity field are shown in
figure 6, the associated time-averaged skewness and flatness functions are displayed
in figure 8. In agreement with the weakly intermittent scaling of the corresponding
structure functions, the PDFs at all spatial scales are close to Gaussian with the
flatness increasing for growing Ω from 2.5 (Ω = 5) to 3.1 (Ω = 50) at large scales and
decreasing from 3.5 (Ω = 5) to 3.2 (Ω =50) at small scales. With increasing rotation
rate the skewness also changes from −0.1 (small scales) and about 0 (large scales) for
Ω = 5 to positive values close to 0 at all scales for Ω =50.

4. Turbulent energy decay under rotation
The influence of rotation on the decay of turbulent energy still remains a

controversial and yet unresolved problem. To help clarify this issue, the time evolution



436 M. Thiele and W.-C. Müller

6

5

4

3

S
4
(ξ

)/
S

22
(ξ

)

ξ

2

1

0

0.01 0.10 1.00

0.1

0.2

0

–0.1

–0.2S
3
(ξ

)/
S

23
/2

(ξ
)

ξ

–0.3

–0.4
0.01 0.10 1.00

(a) (b)

Figure 8. Time-averaged flatness S4(ξ )/(S2(ξ ))2 (a) and skewness S3(ξ )/(S2(ξ ))3/2 (b) of the
PDFs corresponding to the 2D velocity fluctuations (figure 6) for for Ω = 5 (solid line), Ω = 50
(dashed line) and Ω = 0 (dash-3-dotted line).The dash-dotted lines display the respective values
for a Gaussian.

of kinetic energy in freely decaying turbulence has been investigated in simulation III
for eight different rotation rates ranging from Ω = 0 up to Ω =5.

Before describing the decaying runs, the macroscopic effects of the sudden onset of
rotation on the kinetic energy in simulations I and II are reported. In these cases, E

displays a sharp drop of about 20 % (I) and 13 % (II) with a subsequent remount that
levels off close to the previous state. The dissipation rate ε also drops but does not
increase again, remaining at ε � 0.05 in both simulations. This transient behaviour
can be understood by the rotation-induced depletion of the spectral energy transfer
that has been introduced earlier in combination with the applied forcing mechanism.
For a quasi-stationary state of the turbulence the time evolution of the total energy
is characterized by Ė = εf − ε =0, where εf is the energy flux injected through the
forcing. It is important to note that the forcing mechanism used in simulations I and
II does not provide a constant energy injection but rather an εf that nonlinearly
adjusts to the ‘demand’ of the fluctuations with k > kf and is thus coupled to the
cascade dynamics. When rotation is switched on, the cascade gets depleted and
consequently εf diminishes. On the other hand, as less energy reaches the dissipative
scales, ε also decreases. These two effects lead to a transient evolution of the energy
E until a new equilibrium of forcing, cascade and dissipation has been reached. The
observed behaviour does not differ qualitatively when the rotation is ramped up (as
has been checked by test computations). A similar drop of the initial energy has
been reported by Yeung & Zhou (1998). There, however, the energy did not remain
constant afterwards but increased until the end of the simulation. This discrepancy
is probably due to their stochastic driving mechanism leading to a pile-up of energy
at the largest scales. Similarly, the Gaussian forcing spectrum that Smith & Waleffe
(1999) applied at intermediate scales led to a growth of the total energy.

In the decaying case III rotation is switched on after 1 LET of free evolution,
i.e. t = 3. The initial random state with a Gaussian energy spectrum is similar to
that of the driven systems I and II and the same for all values of Ω . The temporal
evolution of E(t) shown in figure 9 clearly demonstrates that the energy in rotating
turbulence decays slower than in the non-rotating flow. This effect, a consequence of
the attenuation of the spectral flux, has also been observed experimentally (Jacquin
et al. 1990) and in LES (Squires et al. 1993; Yang & Domaradzki 2004).

Since the modes with k‖ = 0 play a special role in rotating turbulence, it is instructive
to regard also the 2D kinetic energy E2D(t) =

∫
d k⊥ E(k‖ = 0, k⊥, t). As shown in
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Figure 9. Decay of the total kinetic energy for Ω = 0 (dashed line) and Ω = 0.25, 0.5, 1, 1.5,
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Figure 10. Decay of the 2D kinetic energy E2D(t) =
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d k⊥ E(k‖ = 0, k⊥, t) for Ω = 0 (dashed
line) and Ω = 0.25, 0.5, 1, 1.5, 2.5, 3.5 and 5 (straight lines from bottom to top).

figure 10, E2D(t) tends to be almost constant for higher rotation rates indicating
a separation in the energetic evolution of 2D and 3D flow components (see, e.g.
Bourouiba & Bartello 2007) that becomes significant for Ω > 1.5. This trend does,
however, not lead to total decoupling of 2D and 3D velocity components even in the
limit Ω → ∞ (Babin et al. 2000). Consequently and since the relative contribution of
2D energy compared to 3D energy in the present simulations is also small, the decay
of total energy is dynamically governed by the evolution of 3D turbulent fluctuations.
Hence for simplicity and to facilitate comparison with other works on energy decay
in rotating turbulence, the analysis of decay properties presented in the following
focuses on the (2D + 3D) kinetic energy.

For all rotation rates, the energy exhibits a period of approximate self-similar
decay, E ∼ t−α , see figure 9. In isotropic Navier–Stokes turbulence this property has
been extensively studied (see, e. g. Lesieur 1997), and it is of considerable interest
to investigate how it is affected by rotation. During the power law decay the
logarithmic slope decreases with increasing rotation rate relating an Ω-dependent
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Ω 0 0.25 0.5 1.0 1.5 2.5 3.5 5.0
tmin 11.0 16.4 10.0 11.0 9.0 7.4 7.4 6.7
tmax 20.1 33.1 22.2 18.2 20.1 16.4 16.4 14.9

Table 3. Time intervals used for linear fit in figure 9.

0

Ω = 5

Ω = 0

–0.5

–1.0

d
(l

n
(E

))
/d

(l
n
(t

))

–1.5

–2.0

10 20
t

30 40

Figure 11. Logarithmic derivative of the total kinetic energy for Ω = 0 (dashed line) and
Ω = 0.25, 0.5, 1, 1.5, 2.5, 3.5 and 5 (straight lines from bottom to top).

decay exponent α. Earlier LES and weak turbulence computations seem to indicate
that α is independent of the rotation rate Ω with α ≈ α0/2, where α0 is the non-
rotating value (Squires et al. 1993; Bellet et al. 2006). Theoretical predictions of
Canuto & Dubovikov (1997) and Squires et al. (1993) based on dimensional and
scaling analysis also suggest a scaling exponent that is constant for all Ω in contrast
to the present numerical results.

The actual values of αΩ were obtained by determining the slopes of linear fits to the
approximately self-similar regions in the logarithmic plot of the energy. The respective
time intervals were chosen to match the quasi-constant regions in the logarithmic
derivative shown in figure 11 and are listed in table 3. The different lengths and starting
points of the fit intervals produce some error in the read-off that can be estimated
by the change of the exponents when determined for slightly shifted intervals.
Finally, we obtain an Ω-dependence of the decay exponent as shown in figure 12.
For Ω = 0 we find α0 = 1.54 ± 0.16 in rough agreement with experimental and
theoretical decay studies of non-rotating Navier–Stokes turbulence by Kolmogorov
(1941), Saffman (1967) and Mohamed & LaRue (1990). It should be noted that
the absolute values of the 3D energy decay exponents are systematically increased
by about 0.4 as compared to the total (2D +3D) energy decay while exhibiting
qualitatively the same Ω-dependence (within error margins). This is a consequence
of the additional quasi-constant contribution of the 2D fluctuations in the (2D + 3D)
energy.

The dependency of the decay exponent on the rotation frequency can be explained
phenomenologically based on the scaling properties of rotating turbulence as provided
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above. First, E ∼ t−α(Ω) and Ė ∼ ε yields dimensionally

α
E

τ0

∼ ε, (4.1)

with τ0 being the LET. Evaluating (5.1) at L0, where most of the total energy E

resides, gives

ε ∼ E2

L2
0 Ω

∼ E

τ 2
0 Ω

. (4.2)

Here, we have used the relation L0 ∼ E
1
2 τ0. Inserting (4.2) in (4.1), α(Ω) is found to

follow α(Ω) ∼ 1/(τ0 Ω). To include the correct asymptotics for Ω → 0, i. e. α → α0, we
end up with

α ∼ α2
0

τ0 Ω + α0

, (4.3)

or in a shorter notation,

α ∼ α0
τ0

α0
Ω + 1

∼ α0

τ ′
0 Ω + 1

. (4.4)

Figure 12 indicates that this simple model qualitatively reproduces the general features
of the Ω-dependence of the scaling exponent. This Ω−1-dependence suggests a
complete depletion of nonlinear decay in the limit Ω → ∞. Such behaviour would
also be in accord with a high level of two-dimensionalization, that is, E2D � E3D. We
note, however, that the phenomenology presented here will probably cease to be valid
in this asymptotic limit where weak turbulence theory should apply.

5. Conclusion
In summary, high-resolution DNS of large-scale-driven and decaying rotating

hydrodynamic turbulence have been conducted for slow and rapid rotation and
analysed anisotropically. With increasing rotation rate, all considered systems show
a trend toward dynamical two-dimensionalization in planes perpendicular to the
rotation axis, strong attenuation of the nonlinear spectral energy flux along Ω , and
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concentration of energy around the plane k‖ = 0. The modification of the energy
cascade by rotation leads to an energy spectrum that scales as ∼ k−2

⊥ in the inertial
range with no discernible scaling in k‖. The perpendicular scaling results from the
integration over spectral contributions for all k‖ which exhibit k−3-behaviour near
k‖ = 0 for low rotation rate. Also a modified approximate self-similar decay of the
total kinetic energy E ∼ t−α(Ω) is observed with α ∼ Ω−1. Separating the velocity field
into 2D (k‖ = 0) and 3D (k‖ �=0) components reveals that the 2D energy tends to
become time-independent as the rotation rate increases. Energy decay and spectral
scaling can be reproduced by simple phenomenological models which also yield a
non-intermittent scaling relation for fluctuations perpendicular to the rotation axis,

vξ ∼ (εΩ)1/4ξ 1/2 , (5.1)

with ξ being an axis-perpendicular scale. The structure function scaling and the
PDFs show weak intermittency of the 2D velocity component while the intermittent
signature of the 3D fluctuations is well represented by a model based on the She–
Lévêque ansatz. The intermittency of the 3D velocity component is reflected in
the respective PDFs by the well-known change from Gaussian at large scales to
leptocurtic at small scales. The two-point statistics show an overall weak dependence
on the rotation rate.

The authors thank Stephan Kümmel, Walter Zimmermann and Lorenz Kramer for
their support. W.-C. Müller gratefully acknowledges discussions with J. Léorat, A.
Mahalov, F. Moisy and J. Seiwert.
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